Non-coercive Linear Elliptic Problems
نویسنده
چکیده
We study here some linear elliptic partial differential equations (with Dirichlet, Fourier or mixed boundary conditions), to which convection terms (first order perturbations) are added that entail the loss of the classical coercivity property. We prove the existence, uniqueness and regularity results for the solutions to these problems. Mathematics Subject Classification (2000): 35J25.
منابع مشابه
Measure Data and Numerical Schemes for Elliptic Problems
In order to show existence of solutions for linear elliptic problems with measure data, a first classical method, due to Stampacchia, is to use a duality argument (and a regularity result for elliptic problems). Another classical method is to pass to the limit on approximate solutions obtained with regular data (converging towards the measure data). A third method is presented. It consists to p...
متن کاملA convergent adaptive method for elliptic eigenvalue problems and numerical experiments
We prove the convergence of an adaptive linear finite element method for computing eigenvalues and eigenfunctions of second order symmetric elliptic partial differential operators. The weak form is assumed to yield a bilinear form which is bounded and coercive in H. Each step of the adaptive procedure refines elements in which a standard a posteriori error estimator is large and also refines el...
متن کاملVŠB – Technical University of Ostrava
The thesis focuses on the solution of both coercive and semi–coercive contact problems by using the Boundary Element Tearing and Interconnecting (BETI) method, which represents a boundary element counterpart of the Finite Element Tearing and Interconnecting (FETI) method. The BETI approach, which uses “tearing” the domain into non–overlapping subdomains and subsequent “gluing” along the artific...
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کامل